django-hosts Documentation
Release 3.0

Jannis Leidel and contributors

Nov 20, 2017

Contents

5

Installation

Usage

Settings

More
4.1
4.2
4.3
44
4.5

Issues

docs

Template tags o v e e e e e e e e e e e e e e e e e e e
Python helpers o L e e

Callbacks
FAQ. . .
Changelog

6 Thanks

Python Module Index

12
15
17
17

23

25

27

django-hosts Documentation, Release 3.0

This Django app routes requests for specific hosts to different URL schemes defined in modules called “hostconfs”.

For example, if you own example.com but want to serve specific content at api.example.com and beta.
example.com, add the following to a hosts . py file:

from django_hosts import patterns, host

host_patterns = patterns('path.to',
host (r'api', 'api.urls', name='api'),
host (r'beta', 'beta.urls', name='beta'),

This causes requests to {api, beta}.example.com to be routed to their corresponding URLconf. You can use
your urls.py as atemplate for these hostconfs.

Patterns are evaluated in order. If no pattern matches, the request is processed in the usual way, ie. using the standard
ROOT_URLCONEF.

The patterns on the left-hand side are regular expressions. For example, the following ROOT_HOSTCONF setting will
route foo.example.comand bar.example.com to the same URLconf.

from django_hosts import patterns, host

host_patterns = patterns('"',
host (r' (foolbar)', 'path.to.urls', name='foo-or-bar'),

Contents 1

django-hosts Documentation, Release 3.0

2 Contents

CHAPTER 1

Installation

First, install the app with your favorite package manager, e.g.:

pip install django-hosts

Alternatively, use the repository on Github.

You can find the full docs here: django-hosts.rtfd.org

Then configure your Django site to use the app:

1.
2.

6.

Add 'django_hosts"' to your INSTALLED_APPS setting.

Add 'django_hosts.middleware.HostsRequestMiddleware' to the beginning of your
MIDDLEWARE or MIDDLEWARE_CLASSES setting.

Add 'django_hosts.middleware.HostsResponseMiddleware' to the end of your
MIDDLEWARE or MIDDLEWARE_CLASSES Setting.

Create a new module containing your default host patterns, e.g. in the hosts . py file next to your urls.py.

Set the ROOT_HOSTCONEF setting to the dotted Python import path of the module containing your host patterns,
e.g.

ROOT_HOSTCONF = 'mysite.hosts'

Set the DEFAULT_HOST setting to the name of the host pattern you want to refer to as the default pattern. It’1l
be used if no other pattern matches or you don’t give a name to the host_url template tag.

https://github.com/jazzband/django-hosts
https://django-hosts.readthedocs.io/

django-hosts Documentation, Release 3.0

4 Chapter 1. Installation

CHAPTER 2

Usage

Patterns being regular expressions allows setups to feature dynamic (or “wildcard”) host schemes:

from django.conf import settings
from django_hosts import patterns, host

host_patterns = patterns('"',
host (r'www', settings.ROOT_URLCONF, name='www'),
host (r' (\w+) ', 'path.to.custom urls', name='wildcard'),

Here, requests to www . example.com will be routed as normal but a request to admin.example.com is routed
topath.to.custom_urls.

As patterns are matched in order, we placed www first as it otherwise would have matched against \w+ and thus routed
to the wrong destination.

Alternatively, we could have used negative lookahead, given the value of the ROOT_URLCONF setting:

from django_hosts import patterns, host

host_patterns = patterns('',
host (r' (?!www)\w+', 'path.to.custom_urls', name='wildcard'),

In your templates you can use the host_url () template tag to reverse a URL the way you’re used to it with Django’s
url template tag:

{% load hosts %}

Home |

Your Account
— |

Since the template tag will always automatically fall back to your default host (as defined by DEFAULT _HOST) you
can leave off the host parameter as well.

You can even override the url tag that comes with Django to simplify reversing URLSs in your templates:

django-hosts Documentation, Release 3.0

Home |
Your Account |

On the Python side of things like your views you can easily do the same as with Django’s own reverse function. Simply
use the reverse () function for that:

from django.shortcuts import render
from django_hosts.resolvers import reverse

def homepage (request) :
homepage_url = reverse ('homepage', host="www')
return render (request, 'homepage.html', {'homepage_url': homepage_url})

6 Chapter 2. Usage

CHAPTER 3

Settings

django.conf.settings.ROOT_HOSTCONF (required)
The dotted Python import path of the module containing your host patterns. Similar to ROOT_URLCONF.

django.conf.settings.DEFAULT_HOST (required)
The name of the host pattern you want to refer to as the default pattern. Used if no other host pattern matches or
no host name is passed to the host_url () template tag.

django.conf.settings.PARENT_HOST (optional)
The parent domain name to be appended to the reversed domain (e.g. using the host_url () template tag).

django.conf.settings.HOST_SCHEME (optional)

The scheme to prepend host names with during reversing, e.g. when using the host_url () template tag.
Defaultsto '/ /'.

django.conf.settings.HOST_PORT (optional)
New in version 1.0.

The port to append to host names during reversing, e.g. when using the host_url () template tag. Defaults
to ' ' (empty string).

django.conf.settings.HOST_SITE_TIMEOUT (optional)
The time to cache the host in the default cache backend, in seconds, when using the cached_host_site ()
callback. Defaults to 3600.

django-hosts Documentation, Release 3.0

8 Chapter 3. Settings

CHAPTER 4

More docs
4.1 Template tags
django_hosts.templatetags.hosts.host_url (view_name[, view_args, view_kwargs],
host_name[, host_args, host_kwargs, as_var,

scheme])

Now if you want to actually refer to the full URLSs in your templates you can use the included host_url template
tag. So imagine having a host pattern of:

from django.conf import settings
from django_hosts import patterns, host

host_patterns = patterns('"',
host (r'admin', settings.ROOT_URLCONF, name='our-admin'),

and a ROOT_URLCONF of:

from django.conf.urls import patterns, url

urlpatterns = patterns('mysite.admin',
url (r'~dashboard/$', 'dashboard', name='dashboard'),

then this example will create a link to the admin dashboard:

{% load hosts %}

Admin dashboard

which will be rendered as:

Admin dashboard

django-hosts Documentation, Release 3.0

Note: The double slash at the beginning of the href is an easy way to not have to worry about which scheme (http or
https) is used. Your browser will automatically choose the currently used scheme. If you’re on https://mysite.
com/ alink with an href of / /mysite.com/about/ would actually pointto https://mysite.com/about/

For more information see the The protocol-relative URL article by Paul Irish or the appropriate section in RFC 3986.
Changed in version 0.5.

You can override the used default scheme with the HOST SCHEME setting.

Changed in version 1.0.

You can override the individually used scheme with the scheme parameter.

4.1.1 Override the default url template tag

New in version 1.0.

In case you don’t like adding {$ load hosts %} toeach and every template that you reverse an URL in you can
automatically override the url template tag that is built into Django by adding 'django_hosts.templatetags.
hosts_override' tothe TEMPLATES['OPTIONS'] ['builtins'] list.

It won’t hurt to have some {$ load hosts %} in some templates and the host_url () template tag will also
still work. But that will at least enable the use of templates in 3rd party apps, for example.

4.1.2 Fully qualified domain names (FQDN)

In case you want to append a default domain name to the domain part of the rendered URL you can simply set the
PARENT HOST,e.g:

’PARENT_HOST = 'example.com'

This would render the link of the previous section as:

’Admin dashboard

Alternatively — in case you don’t want to append this parent domain to all URLs you can also spell out the domain in
the host pattern:

from django.conf import settings
from django_hosts import patterns, host

host_patterns = patterns('"',
host (r'admin\ .example\.com', settings.ROOT_URLCONF, name='admin'),
)

4.1.3 Host and URL pattern parameters

If your host pattern contains an parameter (or keyed parameter), like:

10 Chapter 4. More docs

http://paulirish.com/2010/the-protocol-relative-url/
http://tools.ietf.org/html/rfc3986#section-4.2

django-hosts Documentation, Release 3.0

from django.conf import settings
from django_hosts import patterns, host

host_patterns = patterns('',
host (r'www', settings.ROOT_URLCONF, name='homepage'),
host (r' (\w+) ', 'path.to.support_urls', name='wildcard'),
host (r' (?P<username>\w+) .users', 'path.to.user_urls', name='user-area'),

you can also easily pass parameters to the host_url () template tag:

{% load hosts %}

John's_
—»dashboard
FAQ

Which will be rendered (with a PARENT HOST of 'example.com') as:

John's dashboard
FAQ

4.1.4 Changing the scheme individually

It’s not only possible to define the scheme in the hostconf but also on a case-by-case basis using the template tag:

{% load hosts %}

<a href="{% host_url 'user-dashboard' host 'user-area' username='johndoe' scheme
—'https' %}">John's dashboard
FAQ

Which will be rendered (with a PARENT HOST of 'example.com' and a HOST SCHEME setting defaulting to
'// ") as:

John's dashboard
FAQ

4.1.5 Storing the url in a context variable

New in version 0.4.

If you’d like to retrieve a URL without displaying it, you can save the result of the template tag in a template variable
and use it later on, e.g.:

{% load hosts %}

{% host_url 'homepage' as homepage_url %}
Home

4.1. Template tags 11

django-hosts Documentation, Release 3.0

4.2 Python helpers

4.2.1 hosts and patterns

When defining hostconfs you need to use the patterns and host helpers

django_hosts.defaults.patterns (prefix, *args)
The function to define the list of hosts (aka hostconfs), e.g.:

from django_hosts import patterns

host_patterns = patterns('path.to',
(r'www', 'urls.default', 'default'),
(r'api', 'urls.api', 'api'),

Parameters
* prefix (str)—the URLconf prefix to pass to the host object

* xargs —alist of host s instances or an iterable thereof

class django_hosts.defaults.host (regex, urlconf, name, callback=None, prefix="*, scheme=None,
port=None)
The host object used in host conf together with the django _hosts.defaults.patterns () function,
e.g.

from django_hosts import patterns, host

host_patterns = patterns('path.to',

host (r'www', 'urls.default', name='default'),

host (r'api', 'urls.api', name='api'),

host (r'admin', 'urls.admin', name='admin', scheme='https://"),
)

Parameters

* regex (str)— aregular expression to be used to match the request’s host.
* urlconf (str)—the dotted path of a URLconf module of the host

* callback (callable or str)—acallable or the dotted path of a callable to be used
when matching has happened

* prefix (str)— the prefix to apply to the urlconf parameter

* scheme (st r)—the scheme to prepend host names with during reversing, e.g. when using
the host_url() template tag. Defaults to HOST _SCHEME.

* port — the port to append to host names during reversing, e.g. when using the host_url()
template tag. Defaults to HOST_ _PORT.

add_prefix (prefix="")
Adds the prefix string to a string-based urlconf.

12 Chapter 4. More docs

https://python.readthedocs.io/en/v2.7.2/library/functions.html#str
https://python.readthedocs.io/en/v2.7.2/library/functions.html#str
https://python.readthedocs.io/en/v2.7.2/library/functions.html#str
https://python.readthedocs.io/en/v2.7.2/library/functions.html#callable
https://python.readthedocs.io/en/v2.7.2/library/functions.html#str
https://python.readthedocs.io/en/v2.7.2/library/functions.html#str
https://python.readthedocs.io/en/v2.7.2/library/functions.html#str

django-hosts Documentation, Release 3.0

4.2.2 reverse_host and reverse

If you want to reverse the hostname or the full URL or a view including the scheme, hostname and port you’ll need to
use the reverse and reverse_host helper functions (or its lazy cousins).

django_hosts.resolvers.reverse (viewname, args=None, kwargs=None, prefix=None,
current_app=None, host=None, host_args=None,

host_kwargs=None, scheme=None, port=None)
Given the host and view name and the appropriate parameters, reverses the fully qualified URL, e.g.:

>>> from django.conf import settings

>>> settings.ROOT_HOSTCONF = 'mysite.hosts'
>>> settings.PARENT_HOST = 'example.com'

>>> from django_hosts.resolvers import reverse
>>> reverse ('about')

'/ /www.example.com/about/"

>>> reverse ('about', host="www')
'/ /www.example.com/about/"
>>> reverse('repo', args=('jezdez',), host="'www', scheme='git', port=1337)

'git://jezdez.example.com:1337/repo/"

You can set the used port and scheme in the host object or override with the paramater named accordingly.

The host name can be left empty to automatically fall back to the default hostname as defined in the
DEFAULT_HOST setting.

Parameters

* viewname - the name of the view

* args — the arguments of the view

* kwargs — the keyed arguments of the view

* prefix — the prefix of the view urlconf

* current_app - the current_app argument

* scheme - the scheme to use

* port — the port to use

* host - the name of the host

* host_args - the host arguments

* host_kwargs — the host keyed arguments
Raises django.core.urlresolvers.NoReverseMatch — if no host or path matches
Return type the fully qualified URL with path

django_hosts.resolvers.reverse_host (host, args=None, kwargs=None)
Given the host name and the appropriate parameters, reverses the host, e.g.:

>>> from django.conf import settings

>>> settings.ROOT_HOSTCONF = 'mysite.hosts'

>>> settings.PARENT_HOST = 'example.com'

>>> from django_hosts.resolvers import reverse_host
>>> reverse_host ('with_username', args=('jezdez',))
'jezdez.example.com'

Parameters

4.2. Python helpers 13

django-hosts Documentation, Release 3.0

* name — the name of the host as specified in the hostconf
* args — the host arguments to use to find a matching entry in the hostconf
* kwargs — similar to args but key value arguments
Raises django.core.urlresolvers.NoReverseMatch — if no host matches
Return type reversed hostname
django_hosts.resolvers.reverse_host_lazy (*args, **kw)

The lazy version of the reverse_host () function to be used in class based views and other module level
situations

django_hosts.resolvers.reverse_lazy (*args, **kw)
The lazy version of the reverse () function to be used in class based views and other module level situations

4.2.3 HostSiteManager model manager

class django_hosts.managers.HostSiteManager (field_name=None, select_related=True)
A model manager to limit objects to those associated with a site.

Parameters

* field name - the name of the related field pointing at the Site model, or a series of
relations using the fieldl__ field2__ field3 notation. Falls back to looking for ‘site’
and ‘sites’ fields.

* select_related — a boolean specifying whether to use select_related () when
querying the database

Define a manager instance in your model class with one of the following notations:

on_site = HostSiteManager () # automatically looks for site and sites
on_site = HostSiteManager ("author__site")

on_site = HostSiteManager ("author_ blog site™)

on_site = HostSiteManager ("author__blog__site",

select_related=False)

Then query against it with one of the manager methods:

def home_page (request) :
posts = BlogPost.on_site.by_request (request) .all()
return render (request, 'home_page.html', {'posts': posts})

by_id (site_id=None)
Returns a queryset matching the given site id. If not given this falls back to the SITE_ID setting.

Parameters site_id — the ID of the site
Return type QuerySet

by_request (request)
Returns a queryset matching the given request’s site attribute.

Parameters request (HttpRequest) — the current request
Return type QuerySet

by_site (site)
Returns a queryset matching the given site.

14 Chapter 4. More docs

https://docs.djangoproject.com/en/dev/ref/contrib/sites/#django.contrib.sites.models.Site
https://docs.djangoproject.com/en/dev/ref/models/querysets/#django.db.models.query.QuerySet
https://docs.djangoproject.com/en/dev/ref/request-response/#django.http.HttpRequest
https://docs.djangoproject.com/en/dev/ref/models/querysets/#django.db.models.query.QuerySet

django-hosts Documentation, Release 3.0

Parameters site (Site)— a site instance

Return type QuerySet

4.3 Callbacks

Parsing the host from request .get_host () and lookup its corresponding object instance (e.g. site) in every view
violates DRY. If these dynamic hosts had a lot of views this would become particularly unwieldy.

To remedy this, you can optionally specify a callback method to be called if your host matches.

Simply define a callback function:

from django.shortcuts import get_object_or_404
from django.contrib.auth.models import User

def custom_fn (request, username) :
request.viewing_user = get_object_or_404 (User, username=username)

..and pass it as the callback paramter to the host object:

from django.conf import settings
from django_hosts import patterns, host

host_patterns = patterns('"',
host (r'www', settings.ROOT_URLCONF, name='www'),
host (r' (?P<username>\w+) ', 'path.to.custom_ urls',
callback="path.to.custom_fn', name='with-callback'),

This example avoids the duplicated work in every view by attaching a viewing_user instance to the request object.
Views referenced by the “dynamic” URLconf can now assume that this object exists.

The custom method is called with the request object and any named captured arguments, similar to regular Django
url processing.

Callbacks may return either None or an Ht t pResponse object.
* If it returns None, the request continues to be processed and the appropriate view is eventually called.

* If a callback returns an Ht t pResponse object, that Ht tpResponse is returned to the client without any
further processing.

Note: There are a few things to keep in mind when using the callbacks:

Callbacks are executed with the URLconf set to the second argument in the host_patterns list. For exam-
ple, in the example above, the callback will be executed with the URLconf as path.to.custom_urls and
not the default URLconf.

* This can cause problems when reversing URLs within your callback as they may not be “visible” to d jango.
core.urlresolvers.reverse () asthey are specified in (eg.) the default URLconf.

* To remedy this, specify the urlconf parameter when calling reverse ().

e When using dynamic hosts based on user input, ensure users cannot specify names that conflict with static
subdomains such as “www” or their subdomain will not be accessible.

* Don’t forget to add handler404 and handler500 entries for your custom URLconfs.

4.3. Callbacks 15

https://docs.djangoproject.com/en/dev/ref/contrib/sites/#django.contrib.sites.models.Site
https://docs.djangoproject.com/en/dev/ref/models/querysets/#django.db.models.query.QuerySet
https://docs.djangoproject.com/en/dev/ref/request-response/#django.http.HttpRequest.get_host
http://de.wikipedia.org/wiki/Don\T1\textquoteright t_repeat_yourself
https://docs.djangoproject.com/en/dev/ref/request-response/#django.http.HttpResponse
https://docs.djangoproject.com/en/dev/ref/request-response/#django.http.HttpResponse
https://docs.djangoproject.com/en/dev/ref/request-response/#django.http.HttpResponse
https://docs.djangoproject.com/en/dev/ref/urls/#django.conf.urls.handler404
https://docs.djangoproject.com/en/dev/ref/urls/#django.conf.urls.handler500

django-hosts Documentation, Release 3.0

4.3.1 Included callbacks

django-hosts includes the following callbacks for use with the Django contrib app django.contrib.sites:

django_hosts.callbacks.host_site (request, *args, **kwargs)
A callback function which uses the django.contrib.sites contrib app included in Django to match a
host to a Site instance, setting a request . site attribute on success.

Parameters
* request - the request object passed from the middleware
* xargs — the parameters as matched by the host patterns
* xxkwargs — the keyed parameters as matched by the host patterns

It’s important to note that this uses reverse_host () behind the scenes to reverse the host with the given
arguments and keyed arguments to enable a flexible configuration of what will be used to retrieve the Site
instance — in the end the callback will use a domain__iexact lookup to get it.

For example, imagine a host conf with a username parameter:

from django.conf import settings
from django_hosts import patterns, host

settings.PARENT_HOST = 'example.com'

host_patterns = patterns('"',
host (r'www', settings.ROOT_URLCONF, name='www'),
host (r' (?P<username>\w+) ', 'path.to.custom_urls',
callback="'django_hosts.callbacks.host_site',

name='user-sites'),

When requesting this website with the host jezdez .example. com, the callback will act as if you’d do:

request.site = Site.objects.get (domain__iexact='"jezdez.example.com')

..since the result of calling reverse_host () with the username 'jezdez' is 'jezdez.example.

com'.

Later, in your views, you can nicely refer to the current site as request . site for further site-specific func-
tionality.

django_hosts.callbacks.cached_host_site (request, *args, **kwargs)
A callback function similar to host_site () which caches the resulting Site instance in the default cache
backend for the time specfified as HOST _SITE_TIMEOUT.

Parameters
* request — the request object passed from the middleware
* xargs — the parameters as matched by the host patterns

* xxkwargs — the keyed parameters as matched by the host patterns

16 Chapter 4. More docs

https://docs.djangoproject.com/en/dev/ref/contrib/sites/#module-django.contrib.sites
https://docs.djangoproject.com/en/dev/ref/contrib/sites/#django.contrib.sites.models.Site
https://docs.djangoproject.com/en/dev/ref/contrib/sites/#django.contrib.sites.models.Site
https://docs.djangoproject.com/en/dev/ref/contrib/sites/#django.contrib.sites.models.Site

django-hosts Documentation, Release 3.0

4.4 FAQ

4.4.1 Does django-hosts work with the Django Debug Toolbar?

Yes, django-hosts works with Django Debug toolbar with the only limitation that the toolbar’s middleware has to be
come after django-hosts’ Host sRequestMiddleware middleware, e.g.:

MIDDLEWARE (
'django_hosts.middleware.HostsRequestMiddleware',
your other middlewares..
'debug_toolbar.middleware.DebugToolbarMiddleware',
'django_hosts.middleware.HostsResponseMiddleware',

)

Also, you have to install django-debug-toolbar 0.9.X or higher.

4.5 Changelog

4.5.1 3.0 (2017-11-20)

* BACKWARD-INCOMPATIBLE Dropped support for Django < 1.11.

* Confirmed support for Django 1.11 and Python 3.6 (no code changes were required). Added support for Django
2.0.

4.5.2 2.0 (2016-07-25)

¢« BACKWARD-INCOMPATIBLE Removed the Host sMiddleware, deprecated in django-hosts 1.0.

* BACKWARD-INCOMPATIBLE Removed the on argument of the {$ host_url %} template tag, depre-
cated in django-hosts 1.0.

* Added support for Django 1.10.

4.5.3 1.4 (2016-01-21)

* BACKWARD-INCOMPATIBLE Dropped support for Python 3.2.
* Removed the last leftover from Django 1.5 support code.

¢ Clarified license in favor of Jazzband members.

4.5.4 1.3 (2015-12-15)
* BACKWARD-INCOMPATIBLE Dropped support for Django 1.7 as it doesn’t receive security releases any-
more.
* Added support for Django 1.9.
* Moved repo to https://github.com/jazzband/django-hosts
* Moved tests to https://travis-ci.org/jazzband/django-hosts

* Start to use setuptools_scm for easier versioning.

4.4. FAQ 17

https://github.com/django-debug-toolbar/django-debug-toolbar/
http://pypi.python.org/pypi/django-debug-toolbar
https://github.com/jazzband/django-hosts
https://travis-ci.org/jazzband/django-hosts
https://pypi.python.org/pypi/setuptools_scm

django-hosts Documentation, Release 3.0

4.5.5 1.2 (2015-05-06)

* BACKWARD-INCOMPATIBLE Dropped support for Django 1.6 as it doesn’t receive any security releases
anymore.

* BACKWARD-INCOMPATIBLE Removed deprecated d jango_hosts. reverse module as it incorrectly
shadowed the d jango_hosts.resolvers.reverse () function that was added in version 1.0. This is a
earlier deprecation than planned, apologies for the inconvenience.

* Added support for Django 1.8.

4.5.6 1.1 (2015-01-05)

* Improved handling of allowed hosts by returning the 400 response directly.

4.5.7 1.0 (2014-12-29)

BACKWARD-INCOMPATIBLE Moved django_hosts.reverse.reverse_full to
django_hosts.resolvers.reverse () and django_hosts.reverse.reverse_host to
django_hosts.resolvers.reverse_host (). This is a cleanup process to easier map Django’s
features and normalize the call signatures. The old functions are now pending deprecation and will be removed
in the 1.2 release.

BACKWARD-INCOMPATIBLE Dropped support for Django 1.5 as it doesn’t receive any security releases
anymore and 1.4 since its very soon going to lose it’s LTS status.

* Moved repo to https://github.com/jazzband/django-hosts

» Extended testing setup to Python 3.4 and Django 1.7.

» Optionally allow setting the port per host and using the HOST PORT setting.

* Refactored host_url () template tag to closer follow Django’s own url template tag. This includes:
— the renaming of the on argument to host (on will be removed in the 1.2 release)

— the use of the Django>1.5 url template tag syntax that requires the view name (and the host name) to be
quoted unless it’s meant to be a template context variable

Old:

’{% host_url homepage on www %}

New:

’{% host_url 'homepage' host 'www' %}

— the ability to automatically fallback to the host as defined in the DEFAULT HOST setting when no host
name is passed

— anew optional scheme parameter to override the resulting URL’s scheme individually
— anew optional port parameter to override the resulting URL’s port individually

— anew ability to override Django’s built-in url template tag by setting the HOST_OVERRIDE_URL_TAG
setting to True

* Added reverse lazy () and reverse host_lazy () for use in import time situations such as class
based views.

18 Chapter 4. More docs

https://github.com/jazzband/django-hosts

django-hosts Documentation, Release 3.0

* Splitthe django_hosts.middleware.HostsMiddleware middleware into two piece to enable the use
of the request .host parameter in other middlewares. See the installation instruction for the new setup.

* Rely on a few more built-ins in Django instead of writing them ourselves.
* Moved the test suite to use the py.test runner instead of Django’s own test runner.

* Updated the FAQ to explain how to use Django’s full page caching middleware with Django<1.7 and fixed the
entry about the compatibility to the Debug Toolbar.

» Extended the tests to be close to 100% test coverage.
* Added tox configuration for easy local tests.

* Added a few Django 1.7 system checks (for the ROOT_HOSTCONF and DEFAULT_HOST settings).

4.5.8 0.6 (2013-06-17)

¢ Support for Django 1.5.x and Python > 3.2.
* Dropped support for Python 2.5 and Django 1.3.

* Optionally allow setting the scheme per host instead of only using the HOST SCHEME setting.

4.5.9 0.5 (2012-08-29)

* Fixed host reversing when the PARENT_HOST equals

e Added HOST_SCHEME setting to be able to override the default URL scheme when reversing hosts.

4.5.10 0.4.2 (2012-02-14)

* Removed a unneeded installation time requirement for Django <= 1.4.
¢ Removed the use of versiontools due to unwanted installation time side effects.

* Refactored tests slightly.

4.5.11 0.4.1 (2011-12-23)

* Added cached host_site () callback which stores the matching Site instance in the default cache back-
end (also see new HOST _SITE_TIMEOUT setting).

* Throw warning if django-debug-toolbar is used together with the django_hosts and the order of the
MIDDLEWARE_CLASSES setting isn’t correct.

¢ Added CI server at https://ci.enn.io/job/django-hosts/

4.5.12 0.4 (2011-11-04)

* Added ability to save the result of host_url () template tag in a template context variable.

4.5. Changelog 19

https://docs.djangoproject.com/en/dev/ref/contrib/sites/#django.contrib.sites.models.Site
https://ci.enn.io/job/django-hosts/

django-hosts Documentation, Release 3.0

4.5.13 0.3 (2011-09-30)

» Consolidated reversal internals.
* Removed unfinished support for the Django Debug Toolbar.

* Added a custom callback which uses Django’s sites app to retrieve a Site instance matching the current host,
setting request.site.

» Extended tests dramatically (100% coverage).

Added docs at https://django-hosts.readthedocs.io

* Stopped preventing the name ‘default’ for hosts.

4.5.14 0.2.1 (2011-05-31)

* Fixed issue related to the PARENT_HOST setting when used with empty host patterns.

 Stopped automatically emulating hosts in debug mode.

4.5.15 0.2 (2011-05-31)

* BACKWARDS INCOMPATIBLE Renamed the package to django_hosts

Please change your import from:

’from hosts import patterns, hosts

to:

’from django_hosts import patterns, hosts

¢« BACKWARDS INCOMPATIBLE Changed the data type that the django_hosts.patterns function
returns to be a list instead of a SortedDict to follow conventions of Django’s URL patterns. You can use that for
easy extension of the patterns, e.g.:

from django_hosts import patterns, host
from mytemplateproject.hosts import host_patterns

host_patterns += patterns('',
host ("www2', 'mysite.urls.www2', name='www2')

)

» Extended tests to have full coverage.

* Fixed prefix handling.

4.5.16 0.1.1 (2011-05-30)

¢ Fixed docs issues.

* Use absolute imports where possible.

20 Chapter 4. More docs

https://docs.djangoproject.com/en/dev/ref/contrib/sites/
https://django-hosts.readthedocs.io

django-hosts Documentation, Release 3.0

4.5.17 0.1 (2011-05-29)

* Initial release with middleware, reverse and templatetags.

4.5. Changelog 21

django-hosts Documentation, Release 3.0

22 Chapter 4. More docs

CHAPTER B

Issues

For any bug reports and feature requests, please use the Github issue tracker.

23

https://github.com/jazzband/django-hosts/issues

django-hosts Documentation, Release 3.0

24 Chapter 5. Issues

CHAPTER O

Thanks

Many thanks to the folks at playfire for releasing their django-dynamic-subdomains app, which was the inspiration for
this app.

25

http://code.playfire.com/
https://github.com/playfire/django-dynamic-subdomains/

django-hosts Documentation, Release 3.0

26 Chapter 6. Thanks

Python Module Index

d

django_hosts.defaults, 12
django_hosts.managers, 14
django_hosts.resolvers, 13

27

django-hosts Documentation, Release 3.0

28 Python Module Index

Index

A reverse_host_lazy() (in module django_hosts.resolvers),
add_prefix() (django_hosts.defaults.host method), 12 14
reverse_lazy() (in module django_hosts.resolvers), 14

B ROOT_HOSTCONTF (in module django.conf.settings), 7
by_id() (django_hosts.managers.HostSiteManager

method), 14
by_request() (django_hosts.managers.HostSiteManager

method), 14
by_site() (django_hosts.managers.HostSiteManager

method), 14

C

cached_host_site() (in module django_hosts.callbacks),
16

D

DEFAULT_HOST (in module django.conf.settings), 7
django_hosts.defaults (module), 12
django_hosts.managers (module), 14
django_hosts.resolvers (module), 13

H

host (class in django_hosts.defaults), 12

HOST_PORT (in module django.conf.settings), 7

HOST_SCHEME (in module django.conf.settings), 7

host_site() (in module django_hosts.callbacks), 16

HOST_SITE_TIMEOUT (in module
django.conf.settings), 7

host_url() (in module django_hosts.templatetags.hosts), 9

HostSiteManager (class in django_hosts.managers), 14

P

PARENT_HOST (in module django.conf.settings), 7
patterns() (in module django_hosts.defaults), 12

R

reverse() (in module django_hosts.resolvers), 13
reverse_host() (in module django_hosts.resolvers), 13

29

	Installation
	Usage
	Settings
	More docs
	Template tags
	Python helpers
	Callbacks
	FAQ
	Changelog

	Issues
	Thanks
	Python Module Index

